Answer:
Option B
Explanation:
Let
$A=\begin{bmatrix}-1 & 2 & 5\\2 & -4 & a-4\\ 1 & -2 & a+1 \end{bmatrix}\sim\begin{bmatrix}-1 & 2 & 5\\0 & 0 & a+6\\ 0 & 0 & a+6 \end{bmatrix}$
[R2 → R2 + 2R1, R3 → R3 +R1]
Clearly rank of A is 1 if a = -6
Also, for a= 1, | A | = $\begin{vmatrix}-1 & 2 & 5\\2 & -4 & -3\\ 1 & -2 & 2 \end{vmatrix}=0$
and $\begin{vmatrix}2 & 5 \\-4 & -3 \end{vmatrix}= -6+20=14\neq0$
.'. rank of A is 2 if a = 1